mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-19 20:44:39 +09:00
83 lines
2.3 KiB
Python
83 lines
2.3 KiB
Python
# %%
|
|
import os
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
import gc
|
|
|
|
import tensorflow as tf
|
|
from keras import backend as K
|
|
from keras.datasets import mnist
|
|
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
|
from keras.models import Sequential
|
|
from pso import Optimizer
|
|
from tensorflow import keras
|
|
from tqdm import tqdm
|
|
|
|
|
|
def get_data():
|
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
|
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
|
x_train = x_train.reshape((60000, 28, 28, 1))
|
|
x_test = x_test.reshape((10000, 28, 28, 1))
|
|
|
|
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
|
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
|
return x_train, y_train, x_test, y_test
|
|
|
|
def get_data_test():
|
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
x_test = x_test.reshape((10000, 28, 28, 1))
|
|
|
|
return x_test, y_test
|
|
|
|
def make_model():
|
|
model = Sequential()
|
|
model.add(Conv2D(32, kernel_size=(5, 5),
|
|
activation='relu', input_shape=(28, 28, 1)))
|
|
model.add(MaxPooling2D(pool_size=(3, 3)))
|
|
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
model.add(Dropout(0.25))
|
|
model.add(Flatten())
|
|
model.add(Dense(128, activation='relu'))
|
|
model.add(Dense(10, activation='softmax'))
|
|
|
|
return model
|
|
|
|
# %%
|
|
model = make_model()
|
|
x_test, y_test = get_data_test()
|
|
|
|
loss = ['mse', 'categorical_crossentropy', 'binary_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
pso_mnist = Optimizer(
|
|
model,
|
|
loss=loss[0],
|
|
n_particles=100,
|
|
c0=0.35,
|
|
c1=0.8,
|
|
w_min=0.7,
|
|
w_max=1.0,
|
|
negative_swarm=0.2,
|
|
mutation_swarm=0.2,
|
|
)
|
|
|
|
best_score = pso_mnist.fit(
|
|
x_test,
|
|
y_test,
|
|
epochs=200,
|
|
save=True,
|
|
save_path="./result/mnist",
|
|
renewal="acc",
|
|
empirical_balance=False,
|
|
Dispersion=False,
|
|
check_point=25
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
gc.collect() |