Files
PSO/pso/particle.py
jung-geun c163de6cb6 23-07-06
dev container 실행 코드 추가
2023-07-06 22:04:42 +09:00

309 lines
10 KiB
Python

import gc
import numpy as np
import tensorflow as tf
from tensorflow import keras
class Particle:
"""
Particle Swarm Optimization의 Particle을 구현한 클래스
한 파티클의 life cycle은 다음과 같다.
1. 초기화
2. 손실 함수 계산
3. 속도 업데이트
4. 가중치 업데이트
5. 2번으로 돌아가서 반복
"""
def __init__(
self, model: keras.models, loss, negative: bool = False, mutation: float = 0
):
"""
Args:
model (keras.models): 학습 및 검증을 위한 모델
loss (str|): 손실 함수
negative (bool, optional): 음의 가중치 사용 여부 - 전역 탐색 용도(조기 수렴 방지). Defaults to False.
"""
self.model = model
self.loss = loss
init_weights = self.model.get_weights()
i_w_, s_, l_ = self._encode(init_weights)
i_w_ = np.random.uniform(-0.5, 0.5, len(i_w_))
self.velocities = self._decode(i_w_, s_, l_)
self.negative = negative
self.mutation = mutation
self.best_score = 0
self.best_weights = init_weights
del i_w_, s_, l_
del init_weights
gc.collect()
def __del__(self):
del self.model
del self.loss
del self.velocities
del self.negative
del self.best_score
del self.best_weights
gc.collect()
def _encode(self, weights: list):
"""
가중치를 1차원으로 풀어서 반환
Args:
weights (list) : keras model의 가중치
Returns:
(numpy array) : 가중치 - 1차원으로 풀어서 반환
(list) : 가중치의 원본 shape
(list) : 가중치의 원본 shape의 길이
"""
w_gpu = np.array([])
length = []
shape = []
for layer in weights:
shape.append(layer.shape)
w_ = layer.reshape(-1)
length.append(len(w_))
w_gpu = np.append(w_gpu, w_)
return w_gpu, shape, length
def _decode(self, weight: list, shape, length):
"""
_encode 로 인코딩된 가중치를 원본 shape으로 복원
파라미터는 encode의 리턴값을 그대로 사용을 권장
Args:
weight (numpy array): 가중치 - 1차원으로 풀어서 반환
shape (list): 가중치의 원본 shape
length (list): 가중치의 원본 shape의 길이
Returns:
(list) : 가중치 원본 shape으로 복원
"""
weights = []
start = 0
for i in range(len(shape)):
end = start + length[i]
w_ = weight[start:end]
w_ = np.reshape(w_, shape[i])
weights.append(w_)
start = end
del start, end, w_
del shape, length
del weight
return weights
def get_score(self, x, y, renewal: str = "acc"):
"""
모델의 성능을 평가하여 점수를 반환
Args:
x (list): 입력 데이터
y (list): 출력 데이터
renewal (str, optional): 점수 갱신 방식. Defaults to "acc" | "acc" or "loss".
Returns:
(float): 점수
"""
self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
score = self.model.evaluate(x, y, verbose=0)
if renewal == "acc":
if score[1] > self.best_score:
self.best_score = score[1]
self.best_weights = self.model.get_weights()
elif renewal == "loss":
if score[0] == "nan":
score[0] = np.inf
if score[0] < self.best_score:
self.best_score = score[0]
self.best_weights = self.model.get_weights()
return score
def _update_velocity(self, local_rate, global_rate, w, g_best):
"""
현재 속도 업데이트
Args:
local_rate (float): 지역 최적해의 영향력
global_rate (float): 전역 최적해의 영향력
w (float): 현재 속도의 영향력 - 관성 | 0.9 ~ 0.4 이 적당
g_best (list): 전역 최적해
"""
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand()
r1 = np.random.rand()
if self.negative:
new_v = (
w * encode_v
+ -1 * local_rate * r0 * (encode_p - encode_w)
+ -1 * global_rate * r1 * (encode_g - encode_w)
)
else:
new_v = (
w * encode_v
+ local_rate * r0 * (encode_p - encode_w)
+ global_rate * r1 * (encode_g - encode_w)
)
if np.random.rand() < self.mutation:
m_v = np.random.uniform(-0.1, 0.1, len(encode_v))
new_v = m_v
self.velocities = self._decode(new_v, w_sh, w_len)
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
del encode_p, p_sh, p_len
del encode_g, g_sh, g_len
del r0, r1
def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best):
"""
현재 속도 업데이트
기본 업데이트의 변형으로 지역 최적해와 전역 최적해를 분산시켜 조기 수렴을 방지
Args:
local_rate (float): 지역 최적해의 영향력
global_rate (float): 전역 최적해의 영향력
w (float): 현재 속도의 영향력 - 관성 | 0.9 ~ 0.4 이 적당
w_p (float): 지역 최적해의 분산 정도
w_g (float): 전역 최적해의 분산 정도
g_best (list): 전역 최적해
"""
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand()
r1 = np.random.rand()
if self.negative:
new_v = (
w * encode_v
+ -1 * local_rate * r0 * (w_p * encode_p - encode_w)
+ -1 * global_rate * r1 * (w_g * encode_g - encode_w)
)
else:
new_v = (
w * encode_v
+ local_rate * r0 * (w_p * encode_p - encode_w)
+ global_rate * r1 * (w_g * encode_g - encode_w)
)
if np.random.rand() < self.mutation:
m_v = np.random.uniform(-0.1, 0.1, len(encode_v))
new_v = m_v
self.velocities = self._decode(new_v, w_sh, w_len)
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
del encode_p, p_sh, p_len
del encode_g, g_sh, g_len
del r0, r1
def _update_weights(self):
"""
가중치 업데이트
"""
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
new_w = encode_w + encode_v
self.model.set_weights(self._decode(new_w, w_sh, w_len))
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
def f(self, x, y, weights):
"""
EBPSO의 목적함수(예상)
Args:
x (list): 입력 데이터
y (list): 출력 데이터
weights (list): 가중치
Returns:
float: 목적함수 값
"""
self.model.set_weights(weights)
score = self.model.evaluate(x, y, verbose=0)[1]
if score > 0:
return 1 / (1 + score)
else:
return 1 + np.abs(score)
def step(self, x, y, local_rate, global_rate, w, g_best, renewal: str = "acc"):
"""
파티클의 한 스텝을 진행합니다.
Args:
x (list): 입력 데이터
y (list): 출력 데이터
local_rate (float): 지역최적해의 영향력
global_rate (float): 전역최적해의 영향력
w (float): 관성
g_best (list): 전역최적해
renewal (str, optional): 최고점수 갱신 방식. Defaults to "acc" | "acc" or "loss"
Returns:
list: 현재 파티클의 점수
"""
self._update_velocity(local_rate, global_rate, w, g_best)
self._update_weights()
return self.get_score(x, y, renewal)
def step_w(
self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc"
):
"""
파티클의 한 스텝을 진행합니다.
기본 스텝의 변형으로, 지역최적해와 전역최적해의 분산 정도를 조정할 수 있습니다
Args:
x (list): 입력 데이터
y (list): 출력 데이터
local_rate (float): 지역 최적해의 영향력
global_rate (float): 전역 최적해의 영향력
w (float): 관성
g_best (list): 전역 최적해
w_p (float): 지역 최적해의 분산 정도
w_g (float): 전역 최적해의 분산 정도
renewal (str, optional): 최고점수 갱신 방식. Defaults to "acc" | "acc" or "loss"
Returns:
float: 현재 파티클의 점수
"""
self._update_velocity_w(local_rate, global_rate, w, w_p, w_g, g_best)
self._update_weights()
return self.get_score(x, y, renewal)
def get_best_score(self):
"""
파티클의 최고점수를 반환합니다.
Returns:
float: 최고점수
"""
return self.best_score
def get_best_weights(self):
"""
파티클의 최고점수를 받은 가중치를 반환합니다
Returns:
list: 가중치 리스트
"""
return self.best_weights