Files
PSO/iris.py
jung-geun c5731c6870 23-05-29 | 2
처음 초기화를 균일 분포로 랜덤하게 시작함
iris 기준 11 세대만에 99.16 % 에 도달
성능이 매우 높게 나타남
2023-05-29 04:54:20 +09:00

51 lines
1.3 KiB
Python

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from pso import Optimizer
import gc
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation='relu', input_shape=(4,)))
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
return model
def load_data():
iris = load_iris()
x = iris.data
y = iris.target
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, stratify=y)
return x_train, x_test, y_train, y_test
model = make_model()
x_train, x_test, y_train, y_test = load_data()
loss = 'categorical_crossentropy'
pso_iris = Optimizer(model, loss=loss, n_particles=50, c0=0.5, c1=0.8, w_min=0.7, w_max=1.3)
weight, score = pso_iris.fit(
x_train, y_train, epochs=500, save=True, save_path="./result/iris", renewal="acc", empirical_balance=False, Dispersion=False, check_point=50)
pso_iris.model_save("./result/iris")
pso_iris.save_info("./result/iris/")
gc.collect()