mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-10-20
조기 수렴 시 파티클 리셋 적용 모델의 초기화 수정 => 랜덤값은 문제가 많음 미니배치 초기화 시 자동 shuffle 적용 negative 파티클 특정 수치마다 초기화
This commit is contained in:
34
mnist.py
34
mnist.py
@@ -33,34 +33,18 @@ def get_data():
|
||||
return x_train, y_train, x_test, y_test
|
||||
|
||||
|
||||
def get_data_test():
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
x_test = x_test / 255.0
|
||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||
|
||||
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||
|
||||
x_train, x_test = tf.convert_to_tensor(
|
||||
x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(
|
||||
y_train), tf.convert_to_tensor(y_test)
|
||||
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
|
||||
return x_test, y_test
|
||||
|
||||
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(32, kernel_size=(5, 5), activation="sigmoid",
|
||||
input_shape=(28, 28, 1))
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(3, 3)))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Dropout(0.25))
|
||||
model.add(Flatten())
|
||||
model.add(Dropout(0.25))
|
||||
model.add(Dense(256, activation="sigmoid"))
|
||||
model.add(Dense(128, activation="sigmoid"))
|
||||
model.add(Dense(10, activation="softmax"))
|
||||
|
||||
@@ -107,15 +91,19 @@ loss = [
|
||||
pso_mnist = optimizer(
|
||||
model,
|
||||
loss="mean_squared_error",
|
||||
n_particles=600,
|
||||
n_particles=900,
|
||||
c0=0.2,
|
||||
c1=0.4,
|
||||
w_min=0.3,
|
||||
w_max=0.5,
|
||||
negative_swarm=0.05,
|
||||
mutation_swarm=0.3,
|
||||
particle_min=-4,
|
||||
particle_max=4,
|
||||
particle_min=-0.3,
|
||||
particle_max=0.3,
|
||||
early_stopping=True,
|
||||
early_stopping_patience=10,
|
||||
early_stopping_monitor="loss",
|
||||
early_stopping_min_delta=0.0005,
|
||||
)
|
||||
|
||||
best_score = pso_mnist.fit(
|
||||
@@ -130,7 +118,7 @@ best_score = pso_mnist.fit(
|
||||
check_point=25,
|
||||
empirical_balance=False,
|
||||
dispersion=False,
|
||||
batch_size=32,
|
||||
batch_size=1024,
|
||||
)
|
||||
|
||||
print("Done!")
|
||||
|
||||
Reference in New Issue
Block a user