mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-05-29 | 2
처음 초기화를 균일 분포로 랜덤하게 시작함 iris 기준 11 세대만에 99.16 % 에 도달 성능이 매우 높게 나타남
This commit is contained in:
6
iris.py
6
iris.py
@@ -39,9 +39,11 @@ x_train, x_test, y_train, y_test = load_data()
|
||||
|
||||
loss = 'categorical_crossentropy'
|
||||
|
||||
pso_iris = Optimizer(model, loss=loss, n_particles=50, c0=0.4, c1=0.8, w_min=0.7, w_max=1.3)
|
||||
pso_iris = Optimizer(model, loss=loss, n_particles=50, c0=0.5, c1=0.8, w_min=0.7, w_max=1.3)
|
||||
|
||||
weight, score = pso_iris.fit(
|
||||
x_train, y_train, epochs=500, save=True, save_path="./result/iris", renewal="acc", empirical_balance=True, Dispersion=True, check_point=50)
|
||||
x_train, y_train, epochs=500, save=True, save_path="./result/iris", renewal="acc", empirical_balance=False, Dispersion=False, check_point=50)
|
||||
|
||||
pso_iris.model_save("./result/iris")
|
||||
pso_iris.save_info("./result/iris/")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user