Files
PSO/mnist.py
jung-geun 64a16ed61a 23-07-27
순간 가중치 변화량 조정 0.6 > 0.75
+ evaluate multiproessing false
2023-07-27 14:45:42 +09:00

136 lines
3.1 KiB
Python

# %%
import json
import os
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc
import numpy as np
import tensorflow as tf
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from tensorflow import keras
from pso import Optimizer
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test / 255.0
x_test = x_test.reshape((10000, 28, 28, 1))
y_test = tf.one_hot(y_test, 10)
x_test = tf.convert_to_tensor(x_test)
y_test = tf.convert_to_tensor(y_test)
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
def random_state():
with open(
"result/mnist/20230723-061626/mean_squared_error_[0.6384999752044678, 0.0723000094294548].json",
"r",
) as f:
json_ = json.load(f)
rs = (
json_["random_state_0"],
np.array(json_["random_state_1"]),
json_["random_state_2"],
json_["random_state_3"],
json_["random_state_4"],
)
return rs
# %%
model = make_model()
x_train, y_train = get_data_test()
loss = [
"mean_squared_error",
"categorical_crossentropy",
"sparse_categorical_crossentropy",
"binary_crossentropy",
"kullback_leibler_divergence",
"poisson",
"cosine_similarity",
"log_cosh",
"huber_loss",
"mean_absolute_error",
"mean_absolute_percentage_error",
]
rs = random_state()
pso_mnist = Optimizer(
model,
loss=loss[0],
n_particles=500,
c0=0.3,
c1=0.5,
w_min=0.4,
w_max=0.7,
negative_swarm=0.1,
mutation_swarm=0.3,
particle_min=-4,
particle_max=4,
random_state=rs,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=250,
save_info=True,
log=2,
log_name="mnist",
save_path="./result/mnist",
renewal="acc",
check_point=25,
)
print("Done!")
sys.exit(0)