Files
PSO/plt.ipynb
jung-geun 32f4b8e6ed 23-07-18
requirements 파일 수정
2023-07-18 10:44:41 +09:00

76 lines
1.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"%matplotlib inline\n",
"\n",
"data = pd.read_csv(\"result/mnist/07-13-02-05_75_200_0.25_0.4_0.3_acc.csv\", header=None)\n",
"print(data.shape)\n",
"\n",
"loss = pd.DataFrame()\n",
"acc = pd.DataFrame()\n",
"\n",
"for i in range(len(data.iloc[0])):\n",
" if i % 2 == 0:\n",
" loss[i] = data[i]\n",
" else:\n",
" acc[i] = data[i]\n",
"\n",
"print(loss.shape, acc.shape)\n",
"\n",
"fig, axes = plt.subplots(nrows=2, sharey=False, sharex=True, figsize=(6, 6))\n",
"\n",
"loss.replace('nan' ,np.inf ,inplace=True)\n",
"loss = loss.fillna(np.inf)\n",
"\n",
"loss.plot(kind=\"line\", ax=axes[0], legend=False, alpha=0.5, ylabel=\"loss\", grid=True, title=f\"best loss {loss.min(numeric_only=True).min()}\")\n",
"\n",
"acc.plot(kind=\"line\", ax=axes[1], legend=False, alpha=0.5, ylabel=\"acc\", xlabel=\"epoch\", grid=True, title=f\"best acc {acc.max(numeric_only=True).max()}\")\n",
"\n",
"plt.show()\n",
"plt.clf()\n",
"plt.clf()\n",
"plt.close()\n",
"plt.close()\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "pso",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}