Files
PSO/iris.py
jung-geun 7d22ededc7 23-07-12
xor iris 수치 교정
파티클의 분포 조정 가능하게 수정
random 시드 추출
2023-07-12 05:03:18 +09:00

74 lines
1.4 KiB
Python

import os
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from pso import Optimizer
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation="relu", input_shape=(4,)))
model.add(layers.Dense(10, activation="relu"))
model.add(layers.Dense(3, activation="softmax"))
return model
def load_data():
iris = load_iris()
x = iris.data
y = iris.target
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.2, shuffle=True, stratify=y
)
return x_train, x_test, y_train, y_test
model = make_model()
x_train, x_test, y_train, y_test = load_data()
loss = ["categorical_crossentropy", 'mean_squared_error']
pso_iris = Optimizer(
model,
loss=loss[1],
n_particles=100,
c0=0.4,
c1=0.8,
w_min=0.7,
w_max=1.0,
negative_swarm=0.1,
mutation_swarm=0.2,
particle_min=-3,
particle_max=3,
)
best_score = pso_iris.fit(
x_train,
y_train,
epochs=200,
save=True,
save_path="./result/iris",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25,
)
gc.collect()
print("Done!")
sys.exit(0)