Files
PSO/pso/optimizer.py
jung-geun 8d558d0f26 23-08-06
메모리 누수 다소 해결
Fixes #2
EBPSO 의 구현 부분의 문제가 있어 수정중
2023-08-06 19:14:44 +09:00

623 lines
23 KiB
Python

import gc
import json
import os
import sys
from datetime import datetime
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tqdm.auto import tqdm
from .particle import Particle
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as r:
print(r)
class Optimizer:
"""
particle swarm optimization
PSO 실행을 위한 클래스
"""
def __init__(
self,
model: keras.models,
loss="mean_squared_error",
n_particles: int = 10,
c0=0.5,
c1=1.5,
w_min=0.5,
w_max=1.5,
negative_swarm: float = 0,
mutation_swarm: float = 0,
np_seed: int = None,
tf_seed: int = None,
random_state: tuple = None,
particle_min: float = -5,
particle_max: float = 5,
):
"""
particle swarm optimization
Args:
model (keras.models): 모델 구조 - keras.models.model_from_json 을 이용하여 생성
loss (str): 손실함수 - keras.losses 에서 제공하는 손실함수 사용
n_particles (int): 파티클 개수
c0 (float): local rate - 지역 최적값 관성 수치
c1 (float): global rate - 전역 최적값 관성 수치
w_min (float): 최소 관성 수치
w_max (float): 최대 관성 수치
negative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
mutation_swarm (float): 돌연변이가 일어날 확률
np_seed (int, optional): numpy seed. Defaults to None.
tf_seed (int, optional): tensorflow seed. Defaults to None.
particle_min (float, optional): 가중치 초기화 최소값. Defaults to -5.
particle_max (float, optional): 가중치 초기화 최대값. Defaults to 5.
"""
if np_seed is not None:
np.random.seed(np_seed)
if tf_seed is not None:
tf.random.set_seed(tf_seed)
self.random_state = np.random.get_state()
if random_state is not None:
np.random.set_state(random_state)
model.compile(loss=loss, optimizer="sgd", metrics=["accuracy"])
self.model = model # 모델 구조
self.loss = loss # 손실함수
self.n_particles = n_particles # 파티클 개수
self.particles = [None] * n_particles # 파티클 리스트
self.c0 = c0 # local rate - 지역 최적값 관성 수치
self.c1 = c1 # global rate - 전역 최적값 관성 수치
self.w_min = w_min # 최소 관성 수치
self.w_max = w_max # 최대 관성 수치
self.negative_swarm = negative_swarm # 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
self.mutation_swarm = mutation_swarm # 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
self.particle_min = particle_min # 가중치 초기화 최소값
self.particle_max = particle_max
self.g_best_score = [0, np.inf] # 최고 점수 - 시작은 0으로 초기화
self.g_best = None # 최고 점수를 받은 가중치
self.g_best_ = None # 최고 점수를 받은 가중치 - 값의 분산을 위한 변수
self.avg_score = 0 # 평균 점수
self.sigma = 1.0
self.save_path = None # 저장 위치
self.renewal = "acc"
self.dispersion = False
self.day = datetime.now().strftime("%Y%m%d-%H%M%S")
self.empirical_balance = False
negative_count = 0
self.train_summary_writer = [None] * self.n_particles
try:
print(f"start running time : {self.day}")
for i in tqdm(range(self.n_particles), desc="Initializing Particles"):
model_ = keras.models.model_from_json(model.to_json())
w_, sh_, len_ = self._encode(model_.get_weights())
w_ = np.random.uniform(particle_min, particle_max, len(w_))
model_.set_weights(self._decode(w_, sh_, len_))
model_.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
self.particles[i] = Particle(
model_,
loss,
negative=True if i < negative_swarm * self.n_particles else False,
mutation=mutation_swarm,
)
if i < negative_swarm * self.n_particles:
negative_count += 1
# del m, init_weights, w_, sh_, len_
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
print(f"negative swarm : {negative_count} / {self.n_particles}")
print(f"mutation swarm : {mutation_swarm * 100}%")
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
except KeyboardInterrupt:
sys.exit("Ctrl + C : Stop Training")
except MemoryError:
sys.exit("Memory Error : Stop Training")
except Exception as e:
sys.exit(e)
def __del__(self):
del self.model
del self.loss
del self.n_particles
del self.particles
del self.c0
del self.c1
del self.w_min
del self.w_max
del self.negative_swarm
del self.g_best_score
del self.g_best
del self.g_best_
del self.avg_score
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
def _encode(self, weights):
"""
가중치를 1차원으로 풀어서 반환
Args:
weights (list) : keras model의 가중치
Returns:
(numpy array) : 가중치 - 1차원으로 풀어서 반환
(list) : 가중치의 원본 shape
(list) : 가중치의 원본 shape의 길이
"""
w_gpu = np.array([])
length = []
shape = []
for layer in weights:
shape.append(layer.shape)
w_tmp = layer.reshape(-1)
length.append(len(w_tmp))
w_gpu = np.append(w_gpu, w_tmp)
del weights
return w_gpu, shape, length
def _decode(self, weight, shape, length):
"""
_encode 로 인코딩된 가중치를 원본 shape으로 복원
파라미터는 encode의 리턴값을 그대로 사용을 권장
Args:
weight (numpy array): 가중치 - 1차원으로 풀어서 반환
shape (list): 가중치의 원본 shape
length (list): 가중치의 원본 shape의 길이
Returns:
(list) : 가중치 원본 shape으로 복원
"""
weights = []
start = 0
for i in range(len(shape)):
end = start + length[i]
w_tmp = weight[start:end]
w_tmp = np.reshape(w_tmp, shape[i])
weights.append(w_tmp)
start = end
del weight, shape, length
del start, end, w_tmp
return weights
def _f(self, x, y, weights):
"""
EBPSO의 목적함수 (예상)
Args:
x (list): 입력 데이터
y (list): 출력 데이터
weights (list): 가중치
Returns:
(float): 목적 함수 값
"""
self.model.set_weights(weights)
score = self.model.evaluate(x, y, verbose=0)
if self.renewal == "acc":
score_ = score[1]
else:
score_ = score[0]
if score_ > 0:
return 1 / (1 + score_)
else:
return 1 + np.abs(score_)
def fit(
self,
x,
y,
epochs: int = 100,
log: int = 0,
log_name: str = None,
save_info: bool = False,
save_path: str = "./result",
renewal: str = "acc",
empirical_balance: bool = False,
dispersion: bool = False,
check_point: int = None,
):
"""
# Args:
x : numpy array,
y : numpy array,
epochs : int,
log : int - 0 : log 기록 안함, 1 : log, 2 : tensorboard,
save_info : bool - 종료시 학습 정보 저장 여부 default : False,
save_path : str - ex) "./result",
renewal : str ex) "acc" or "loss" or "both",
empirical_balance : bool - True : EBPSO, False : PSO,
dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용
check_point : int - 저장할 위치 - None : 저장 안함
"""
self.save_path = save_path
self.empirical_balance = empirical_balance
self.dispersion = dispersion
self.renewal = renewal
particle_sum = 0 # x_j
try:
train_log_dir = "logs/fit/" + self.day
if log == 2:
assert log_name is not None, "log_name is None"
train_log_dir = f"logs/{log_name}/{self.day}/train"
for i in range(self.n_particles):
self.train_summary_writer[i] = tf.summary.create_file_writer(
train_log_dir + f"/{i}"
)
elif check_point is not None or log == 1:
if save_path is None:
raise ValueError("save_path is None")
else:
self.save_path = save_path
if not os.path.exists(f"{save_path}/{self.day}"):
os.makedirs(f"{save_path}/{self.day}", exist_ok=True)
except ValueError as e:
sys.exit(e)
except Exception as e:
sys.exit(e)
for i in tqdm(range(self.n_particles), desc="Initializing velocity"):
p = self.particles[i]
local_score = p.get_score(x, y, renewal=renewal)
particle_sum += local_score[1]
if renewal == "acc":
if local_score[1] > self.g_best_score[0]:
self.g_best_score[0] = local_score[1]
self.g_best_score[1] = local_score[0]
self.g_best = p.get_best_weights()
self.g_best_ = p.get_best_weights()
elif renewal == "loss":
if local_score[0] < self.g_best_score[1]:
self.g_best_score[1] = local_score[0]
self.g_best_score[0] = local_score[1]
self.g_best = p.get_best_weights()
self.g_best_ = p.get_best_weights()
elif renewal == "both":
if local_score[1] > self.g_best_score[0]:
self.g_best_score[0] = local_score[1]
self.g_best_score[1] = local_score[0]
self.g_best = p.get_best_weights()
self.g_best_ = p.get_best_weights()
if log == 1:
with open(
f"./{save_path}/{self.day}/{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv",
"a",
) as f:
f.write(f"{local_score[0]}, {local_score[1]}")
if i != self.n_particles - 1:
f.write(", ")
else:
f.write("\n")
elif log == 2:
with self.train_summary_writer[i].as_default():
tf.summary.scalar("loss", local_score[0], step=0)
tf.summary.scalar("accuracy", local_score[1], step=0)
del local_score
# gc.collect()
# tf.keras.backend.reset_uids()
# tf.keras.backend.clear_session()
print(
f"initial g_best_score : {self.g_best_score[0] if self.renewal == 'acc' else self.g_best_score[1]}"
)
try:
epoch_sum = 0
epochs_pbar = tqdm(
range(epochs),
desc=f"best {self.g_best_score[0]:.4f}|{self.g_best_score[1]:.4f}",
ascii=True,
leave=True,
position=0,
)
for epoch in epochs_pbar:
particle_avg = particle_sum / self.n_particles # x_j
particle_sum = 0
max_score = 0
min_loss = np.inf
# epoch_particle_sum = 0
part_pbar = tqdm(
range(len(self.particles)),
desc=f"acc : {max_score:.4f} loss : {min_loss:.4f}",
ascii=True,
leave=False,
position=1,
)
w = self.w_max - (self.w_max - self.w_min) * epoch / epochs
for i in part_pbar:
part_pbar.set_description(
f"acc : {max_score:.4f} loss : {min_loss:.4f}"
)
g_best = self.g_best
if dispersion:
ts = self.particle_min + np.random.rand() * (
self.particle_max - self.particle_min
)
g_, g_sh, g_len = self._encode(self.g_best)
decrement = (epochs - epoch + 1) / epochs
g_ = (1 - decrement) * g_ + decrement * ts
self.g_best_ = self._decode(g_, g_sh, g_len)
g_best = self.g_best_
if empirical_balance:
if np.random.rand() < np.exp(-(epoch) / epochs):
w_p_ = self._f(x, y, self.particles[i].get_best_weights())
w_g_ = self._f(x, y, self.g_best)
w_p = w_p_ / (w_p_ + w_g_)
w_g = w_p_ / (w_p_ + w_g_)
del w_p_
del w_g_
else:
p_b = self.particles[i].get_best_score()
g_a = self.avg_score
l_b = p_b - g_a
sigma_post = np.sqrt(np.power(l_b, 2))
sigma_pre = (
1
/ (
self.n_particles
* np.linalg.norm(
self.particle_max - self.particle_min
)
)
* sigma_post
)
p_ = np.exp(-1 * sigma_pre * sigma_post)
# p_ = (
# 1
# / (self.n_particles * np.linalg.norm(self.particle_max - self.particle_min))
# * np.exp(
# -np.power(l_b, 2) / (2 * np.power(self.sigma, 2))
# )
# )
# g_ = (
# 1
# / np.linalg.norm(self.c1 - self.c0)
# * np.exp(
# -np.power(l_b, 2) / (2 * np.power(self.sigma, 2))
# )
# )
# w_p = p_ / (p_ + g_)
# w_g = g_ / (p_ + g_)
w_p = p_
w_g = 1 - p_
del p_b
del g_a
del l_b
del p_
score = self.particles[i].step_w(
x,
y,
self.c0,
self.c1,
w,
g_best,
w_p,
w_g,
renewal=renewal,
)
epoch_sum += np.power(score[1] - particle_avg, 2)
else:
score = self.particles[i].step(
x, y, self.c0, self.c1, w, g_best, renewal=renewal
)
if log == 2:
with self.train_summary_writer[i].as_default():
tf.summary.scalar("loss", score[0], step=epoch + 1)
tf.summary.scalar("accuracy", score[1], step=epoch + 1)
if renewal == "acc":
if score[1] >= max_score:
max_score = score[1]
min_loss = score[0]
if score[1] >= self.g_best_score[0]:
if score[1] > self.g_best_score[0]:
self.g_best_score[0] = score[1]
self.g_best = self.particles[i].get_best_weights()
else:
if score[0] < self.g_best_score[1]:
self.g_best_score[1] = score[0]
self.g_best = self.particles[i].get_best_weights()
epochs_pbar.set_description(
f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}"
)
elif renewal == "loss":
if score[0] <= min_loss:
min_loss = score[0]
max_score = score[1]
if score[0] <= self.g_best_score[1]:
if score[0] < self.g_best_score[1]:
self.g_best_score[1] = score[0]
self.g_best = self.particles[i].get_best_weights()
else:
if score[1] > self.g_best_score[0]:
self.g_best_score[0] = score[1]
self.g_best = self.particles[i].get_best_weights()
epochs_pbar.set_description(
f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}"
)
elif renewal == "both":
if score[0] <= min_loss:
min_loss = score[0]
if score[1] >= self.g_best_score[0]:
self.g_best_score[0] = score[1]
self.g_best = self.particles[i].get_best_weights()
epochs_pbar.set_description(
f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}"
)
if score[1] >= max_score:
max_score = score[1]
if score[0] <= self.g_best_score[1]:
self.g_best_score[1] = score[0]
self.g_best = self.particles[i].get_best_weights()
epochs_pbar.set_description(
f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}"
)
particle_sum += score[1]
if log == 1:
with open(
f"./{save_path}/{self.day}/{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv",
"a",
) as f:
f.write(f"{score[0]}, {score[1]}")
if i != self.n_particles - 1:
f.write(", ")
else:
f.write("\n")
part_pbar.refresh()
if check_point is not None:
if epoch % check_point == 0:
os.makedirs(f"./{save_path}/{self.day}", exist_ok=True)
self._check_point_save(f"./{save_path}/{self.day}/ckpt-{epoch}")
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
except KeyboardInterrupt:
print("Ctrl + C : Stop Training")
except MemoryError:
print("Memory Error : Stop Training")
except Exception as e:
print(e)
finally:
self.model_save(save_path)
print("model save")
if save_info:
self.save_info(save_path)
print("save info")
return self.g_best_score
def get_best_model(self):
"""
최고 점수를 받은 모델을 반환
Returns:
(keras.models): 모델
"""
model = keras.models.model_from_json(self.model.to_json())
model.set_weights(self.g_best)
model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
return model
def get_best_score(self):
"""
최고 점수를 반환
Returns:
(float): 점수
"""
return self.g_best_score
def get_best_weights(self):
"""
최고 점수를 받은 가중치를 반환
Returns:
(float): 가중치
"""
return self.g_best
def save_info(self, path: str = "./result"):
"""
학습 정보를 저장
Args:
path (str, optional): 저장 위치. Defaults to "./result".
"""
json_save = {
"name": f"{self.day}/{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5",
"n_particles": self.n_particles,
"score": self.g_best_score,
"c0": self.c0,
"c1": self.c1,
"w_min": self.w_min,
"w_max": self.w_max,
"loss_method": self.loss,
"empirical_balance": self.empirical_balance,
"dispersion": self.dispersion,
"negative_swarm": self.negative_swarm,
"mutation_swarm": self.mutation_swarm,
"random_state_0": self.random_state[0],
"random_state_1": self.random_state[1].tolist(),
"random_state_2": self.random_state[2],
"random_state_3": self.random_state[3],
"random_state_4": self.random_state[4],
"renewal": self.renewal,
}
with open(
f"./{path}/{self.day}/{self.loss}_{self.g_best_score}.json",
"a",
) as f:
json.dump(json_save, f, indent=4)
def _check_point_save(self, save_path: str = f"./result/check_point"):
"""
중간 저장
Args:
save_path (str, optional): checkpoint 저장 위치 및 이름. Defaults to f"./result/check_point".
"""
model = self.get_best_model()
model.save_weights(save_path)
def model_save(self, save_path: str = "./result"):
"""
최고 점수를 받은 모델 저장
Args:
save_path (str, optional): 모델의 저장 위치. Defaults to "./result".
Returns:
(keras.models): 모델
"""
model = self.get_best_model()
model.save(
f"./{save_path}/{self.day}/{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5"
)
return model