Files
PSO/test/mnist.py

89 lines
2.1 KiB
Python

# %%
import os
import sys
from pso import optimizer
import tensorflow as tf
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(256, activation="relu"))
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
# %%
model = make_model()
x_train, y_train, x_test, y_test = get_data()
pso_mnist = optimizer(
model,
loss="categorical_crossentropy",
n_particles=200,
c0=0.7,
c1=0.4,
w_min=0.1,
w_max=0.9,
negative_swarm=0.0,
mutation_swarm=0.05,
convergence_reset=True,
convergence_reset_patience=10,
convergence_reset_monitor="loss",
convergence_reset_min_delta=0.005,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=1000,
save_info=True,
log=2,
log_name="mnist",
renewal="loss",
check_point=25,
batch_size=5000,
validate_data=(x_test, y_test),
)
print("Done!")
sys.exit(0)