Files
PSO/bean.py
jung-geun 0062b1850b 코드 변경 내용: digits.py, iris.py, mnist.py, bean.py
Keras 모듈을 사용하여 코드를 업데이트했습니다.
2024-02-25 08:09:20 +09:00

73 lines
1.6 KiB
Python

import os
from keras.layers import Dense
from keras.models import Sequential
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from tensorflow import keras
from ucimlrepo import fetch_ucirepo
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
def make_model():
model = Sequential()
model.add(Dense(12, input_dim=16, activation="relu"))
model.add(Dense(8, activation="relu"))
model.add(Dense(7, activation="softmax"))
return model
def get_data():
# fetch dataset
dry_bean_dataset = fetch_ucirepo(id=602)
# data (as pandas dataframes)
X = dry_bean_dataset.data.features
y = dry_bean_dataset.data.targets
x = X.to_numpy()
# object to categorical
x = x.astype("float32")
y_class = to_categorical(y)
# metadata
# print(dry_bean_dataset.metadata)
# variable information
# print(dry_bean_dataset.variables)
# print(X.head())
# print(y.head())
# y_class = to_categorical(y)
x_train, x_test, y_train, y_test = train_test_split(
x, y_class, test_size=0.2, random_state=42, shuffle=True
)
return x_train, x_test, y_train, y_test
x_train, x_test, y_train, y_test = get_data()
model = make_model()
early_stopping = keras.callbacks.EarlyStopping(
patience=10, min_delta=0.001, restore_best_weights=True
)
model.compile(
loss="sparse_categorical_crossentropy",
optimizer="adam",
metrics=["accuracy", "mse"],
)
model.summary()
history = model.fit(
x_train, y_train, epochs=150, batch_size=10, callbacks=[early_stopping]
)
score = model.evaluate(x_test, y_test, verbose=2)