Files
PSO/mnist.py
jung-geun 544a818940 23-06-28
단순 업데이트
2023-06-28 23:29:27 +09:00

96 lines
2.6 KiB
Python

# %%
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
import numpy as np
np.random.seed(777)
import gc
from datetime import date
from keras import backend as K
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
# from pso_tf import PSO
from pso import Optimizer
from tensorflow import keras
from tqdm import tqdm
# print(tf.__version__)
# print(tf.config.list_physical_devices())
# print(f"Num GPUs Available: {len(tf.config.list_physical_devices('GPU'))}")
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
def make_model():
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),
activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
return model
# %%
model = make_model()
x_test, y_test = get_data_test()
loss = ['mse', 'categorical_crossentropy', 'binary_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
if __name__ == "__main__":
try:
pso_mnist = Optimizer(
model,
loss=loss[0],
n_particles=75,
c0=0.3,
c1=0.7,
w_min=0.6,
w_max=0.9,
negative_swarm=0.25,
momentun_swarm=0,
)
best_score = pso_mnist.fit(
x_test,
y_test,
epochs=200,
save=True,
save_path="./result/mnist",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25
)
except Exception as e:
print(e)
finally:
gc.collect()