Files
PSO/iris.py
jung-geun 2a28b7fa04 23-06-23
readme 파일 수정 - env 파일 및 설명 추가 , 참고 자료 수정
iris_tf.py 모델의 성능 교차 검증을 위해 추가
2023-06-23 06:37:01 +00:00

69 lines
1.4 KiB
Python

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
import numpy as np
np.random.seed(777)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from pso import Optimizer
import gc
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation='relu', input_shape=(4,)))
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
return model
def load_data():
iris = load_iris()
x = iris.data
y = iris.target
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, stratify=y)
return x_train, x_test, y_train, y_test
model = make_model()
x_train, x_test, y_train, y_test = load_data()
loss = ['categorical_crossentropy']
pso_iris = Optimizer(
model,
loss=loss[0],
n_particles=75,
c0=0.4,
c1=0.8,
w_min=0.7,
w_max=1.0,
negative_swarm=0.25
)
best_score = pso_iris.fit(
x_train,
y_train,
epochs=200,
save=True,
save_path="./result/iris",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25
)
gc.collect()