Files
PSO/iris.py
2024-03-08 21:32:13 +09:00

74 lines
1.4 KiB
Python

import gc
import os
import sys
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from pso import optimizer
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation="relu", input_shape=(4,)))
model.add(layers.Dense(10, activation="relu"))
model.add(layers.Dense(3, activation="softmax"))
return model
def load_data():
iris = load_iris()
x = iris.data
y = iris.target
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.2, shuffle=True, stratify=y
)
return x_train, x_test, y_train, y_test
model = make_model()
x_train, x_test, y_train, y_test = load_data()
pso_iris = optimizer(
model=model,
loss="categorical_crossentropy",
n_particles=100,
c0=0.5,
c1=0.3,
w_min=0.1,
w_max=0.9,
negative_swarm=0,
mutation_swarm=0.1,
convergence_reset=True,
convergence_reset_patience=10,
convergence_reset_monitor="loss",
convergence_reset_min_delta=0.001,
)
best_score = pso_iris.fit(
x_train,
y_train,
epochs=500,
save_info=True,
log=2,
log_name="iris",
renewal="loss",
check_point=25,
validate_data=(x_test, y_test),
)
gc.collect()
print("Done!")
sys.exit(0)