Files
PSO/psokeras/particle.py
jung-geun 91c6ec965b 23-05-29
EBPSO 알고리즘 구현 - 선택지로 추가
random 으로 분산시키는 방법 구현 - 선택지로 추가
iris 기준 98퍼센트로 나오나 정확한 결과를 지켜봐야 할것으로 보임
2023-05-29 04:01:48 +09:00

67 lines
2.3 KiB
Python
Executable File

import random
import numpy as np
from psokeras.optimizer import BIG_SCORE
class Particle:
def __init__(self, model, params):
self.model = model
self.params = params
self.init_weights = model.get_weights()
self.velocities = [None] * len(self.init_weights)
self.length = len(self.init_weights)
for i, layer in enumerate(self.init_weights):
self.velocities[i] = np.random.rand(*layer.shape) / 5 - 0.10
# self.velocities[i] = np.zeros(layer.shape)
self.best_weights = None
self.best_score = BIG_SCORE
def get_score(self, x, y, update=True):
local_score = self.model.evaluate(x, y, verbose=0)
if local_score < self.best_score and update:
self.best_score = local_score
self.best_weights = self.model.get_weights()
return local_score
def _update_velocities(self, global_best_weights, depth):
new_velocities = [None] * len(self.init_weights)
weights = self.model.get_weights()
local_rand, global_rand = random.random(), random.random()
for i, layer in enumerate(weights):
if i >= depth:
new_velocities[i] = self.velocities[i]
continue
new_v = self.params['acc'] * self.velocities[i]
new_v = new_v + self.params['local_acc'] * local_rand * (self.best_weights[i] - layer)
new_v = new_v + self.params['global_acc'] * global_rand * (global_best_weights[i] - layer)
new_velocities[i] = new_v
self.velocities = new_velocities
def _update_weights(self, depth):
old_weights = self.model.get_weights()
new_weights = [None] * len(old_weights)
for i, layer in enumerate(old_weights):
if i>= depth:
new_weights[i] = layer
continue
new_w = layer + self.velocities[i]
new_weights[i] = new_w
self.model.set_weights(new_weights)
def step(self, x, y, global_best_weights,depth=None):
if depth is None:
depth = self.length
self._update_velocities(global_best_weights, depth)
self._update_weights(depth)
return self.get_score(x, y)
def get_best_weights(self):
return self.best_weights