Files
PSO/pso/optimizer.py
jung-geun c8741dcd6d 23-10-21
version 1.0.2
back propagation 설정 가능
=> 초기에 한해서 역전파 1회 실행 가능
2023-10-21 02:29:44 +09:00

752 lines
27 KiB
Python

import gc
import json
import os
import sys
from datetime import datetime
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tqdm.auto import tqdm
from .particle import Particle
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as r:
print(r)
class Optimizer:
"""
particle swarm optimization
PSO 실행을 위한 클래스
"""
def __init__(
self,
model: keras.models,
loss: any = None,
n_particles: int = None,
c0: float = 0.5,
c1: float = 1.5,
w_min: float = 0.5,
w_max: float = 1.5,
negative_swarm: float = 0,
mutation_swarm: float = 0,
np_seed: int = None,
tf_seed: int = None,
random_state: tuple = None,
convergence_reset: bool = False,
convergence_reset_patience: int = 10,
convergence_reset_min_delta: float = 0.0001,
convergence_reset_monitor: str = "mse",
):
"""
particle swarm optimization
Args:
model (keras.models): 모델 구조 - keras.models.model_from_json 을 이용하여 생성
loss (str): 손실함수 - keras.losses 에서 제공하는 손실함수 사용
n_particles (int): 파티클 개수
c0 (float): local rate - 지역 최적값 관성 수치
c1 (float): global rate - 전역 최적값 관성 수치
w_min (float): 최소 관성 수치
w_max (float): 최대 관성 수치
negative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
mutation_swarm (float): 돌연변이가 일어날 확률
np_seed (int, optional): numpy seed. Defaults to None.
tf_seed (int, optional): tensorflow seed. Defaults to None.
convergence_reset (bool, optional): early stopping 사용 여부. Defaults to False.
convergence_reset_patience (int, optional): early stopping 사용시 얼마나 기다릴지. Defaults to 10.
convergence_reset_min_delta (float, optional): early stopping 사용시 얼마나 기다릴지. Defaults to 0.0001.
convergence_reset_monitor (str, optional): early stopping 사용시 어떤 값을 기준으로 할지. Defaults to "loss". - "loss" or "acc" or "mse"
"""
try:
if model is None:
raise ValueError("model is None")
if model is not None and not isinstance(model, keras.models.Model):
raise ValueError("model is not keras.models.Model")
if loss is None:
raise ValueError("loss is None")
if n_particles is None:
raise ValueError("n_particles is None")
if n_particles < 1:
raise ValueError("n_particles < 1")
if c0 < 0 or c1 < 0:
raise ValueError("c0 or c1 < 0")
if np_seed is not None:
np.random.seed(np_seed)
if tf_seed is not None:
tf.random.set_seed(tf_seed)
self.random_state = np.random.get_state()
if random_state is not None:
np.random.set_state(random_state)
model.compile(
loss=loss,
optimizer="adam",
metrics=["accuracy", "mse"]
)
self.model = model # 모델 구조
self.loss = loss # 손실함수
self.n_particles = n_particles # 파티클 개수
self.particles = [None] * n_particles # 파티클 리스트
self.c0 = c0 # local rate - 지역 최적값 관성 수치
self.c1 = c1 # global rate - 전역 최적값 관성 수치
self.w_min = w_min # 최소 관성 수치
self.w_max = w_max # 최대 관성 수치
self.negative_swarm = negative_swarm # 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
self.mutation_swarm = mutation_swarm # 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
self.g_best_score = [np.inf, 0, np.inf] # 최고 점수 - 시작은 0으로 초기화
self.g_best = model.get_weights() # 최고 점수를 받은 가중치
self.avg_score = 0 # 평균 점수
# self.sigma = 1.0
self.save_path = None # 저장 위치
self.renewal = "acc"
self.dispersion = False
self.day = datetime.now().strftime("%Y%m%d-%H%M%S")
self.empirical_balance = False
negative_count = 0
self.train_summary_writer = [None] * self.n_particles
print(f"start running time : {self.day}")
for i in tqdm(range(self.n_particles), desc="Initializing Particles"):
self.particles[i] = Particle(
model,
self.loss,
negative=True if i < self.negative_swarm * self.n_particles else False,
mutation=self.mutation_swarm,
converge_reset=convergence_reset,
converge_reset_patience=convergence_reset_patience,
converge_reset_monitor=convergence_reset_monitor,
converge_reset_min_delta=convergence_reset_min_delta,
)
if i < self.negative_swarm * self.n_particles:
negative_count += 1
# del m, init_weights, w_, sh_, len_
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
# del model_
print(f"negative swarm : {negative_count} / {n_particles}")
print(f"mutation swarm : {mutation_swarm * 100}%")
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
except KeyboardInterrupt:
sys.exit("Ctrl + C : Stop Training")
except MemoryError:
sys.exit("Memory Error : Stop Training")
except ValueError as ve:
sys.exit(ve)
except Exception as e:
sys.exit(e)
def __del__(self):
del self.model
del self.loss
del self.n_particles
del self.particles
del self.c0
del self.c1
del self.w_min
del self.w_max
del self.negative_swarm
del self.g_best_score
del self.g_best
del self.avg_score
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
def _encode_(self, weights):
"""
가중치를 1차원으로 풀어서 반환
Args:
weights (list) : keras model의 가중치
Returns:
(numpy array) : 가중치 - 1차원으로 풀어서 반환
(list) : 가중치의 원본 shape
(list) : 가중치의 원본 shape의 길이
"""
w_gpu = np.array([])
length = []
shape = []
for layer in weights:
shape.append(layer.shape)
w_tmp = layer.reshape(-1)
length.append(len(w_tmp))
w_gpu = np.append(w_gpu, w_tmp)
del weights
return w_gpu, shape, length
def _decode_(self, weight, shape, length):
"""
_encode_ 로 인코딩된 가중치를 원본 shape으로 복원
파라미터는 encode의 리턴값을 그대로 사용을 권장
Args:
weight (numpy array): 가중치 - 1차원으로 풀어서 반환
shape (list): 가중치의 원본 shape
length (list): 가중치의 원본 shape의 길이
Returns:
(list) : 가중치 원본 shape으로 복원
"""
weights = []
start = 0
for i in range(len(shape)):
end = start + length[i]
w_tmp = weight[start:end]
w_tmp = np.reshape(w_tmp, shape[i])
weights.append(w_tmp)
start = end
del weight, shape, length
del start, end, w_tmp
return weights
def _f(self, x, y, weights):
"""
EBPSO의 목적함수 (예상)
Args:
x (list): 입력 데이터
y (list): 출력 데이터
weights (list): 가중치
Returns:
(float): 목적 함수 값
"""
self.model.set_weights(weights)
score = self.model.evaluate(x, y, verbose=0)
if self.renewal == "acc":
score_ = score[1]
else:
score_ = score[0]
if score_ > 0:
return 1 / (1 + score_)
else:
return 1 + np.abs(score_)
def __weight_range__(self):
"""
가중치의 범위를 반환
Returns:
(float): 가중치의 최소값
(float): 가중치의 최대값
"""
w_, w_s, w_l = self._encode_(self.g_best)
weight_min = np.min(w_)
weight_max = np.max(w_)
del w_, w_s, w_l
return weight_min, weight_max
class _batch_generator_:
def __init__(self, x, y, batch_size: int = 32):
self.batch_size = batch_size
self.index = 0
self.x = x
self.y = y
self.setBatchSize(batch_size)
def next(self):
self.index += 1
if self.index >= self.max_index:
self.index = 0
self.__getBatchSlice__(self.batch_size)
return self.dataset[self.index][0], self.dataset[self.index][1]
def getMaxIndex(self):
return self.max_index
def getIndex(self):
return self.index
def setIndex(self, index):
self.index = index
def getBatchSize(self):
return self.batch_size
def setBatchSize(self, batch_size):
self.batch_size = batch_size
if self.batch_size > len(self.x):
self.batch_size = len(self.x)
print(f"batch size : {self.batch_size}")
self.dataset = self.__getBatchSlice__(self.batch_size)
self.max_index = len(self.dataset)
def __getBatchSlice__(self, batch_size):
return list(
tf.data.Dataset.from_tensor_slices(
(self.x, self.y)).shuffle(len(self.x)).batch(batch_size)
)
def getDataset(self):
return self.dataset
def fit(
self,
x,
y,
epochs: int = 1,
log: int = 0,
log_name: str = None,
save_info: bool = False,
save_path: str = "./logs",
renewal: str = "mse",
empirical_balance: bool = False,
dispersion: bool = False,
check_point: int = None,
batch_size: int = None,
validate_data: any = None,
back_propagation: bool = False,
):
"""
# Args:
x : numpy array,
y : numpy array,
epochs : int,
log : int - 0 : log 기록 안함, 1 : csv, 2 : tensorboard,
save_info : bool - 종료시 학습 정보 저장 여부 default : False,
save_path : str - ex) "./result",
renewal : str ex) "acc" or "loss" or "mse",
empirical_balance : bool - True : EBPSO, False : PSO,
dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용
check_point : int - 저장할 위치 - None : 저장 안함
batch_size : int - batch size default : None => len(x) // 10
batch_size > len(x) : auto max batch size
"""
try:
if x.shape[0] != y.shape[0]:
raise ValueError("x, y shape error")
if log not in [0, 1, 2]:
raise ValueError("log not in [0, 1, 2]")
if save_info and save_path is None:
raise ValueError("save_path is None")
if renewal not in ["acc", "loss", "mse"]:
raise ValueError("renewal not in ['acc', 'loss', 'mse']")
if check_point is not None and save_path is None:
raise ValueError("save_path is None")
except ValueError as ve:
sys.exit(ve)
self.save_path = save_path
self.empirical_balance = empirical_balance
self.dispersion = dispersion
if batch_size is None:
batch_size = len(x) // 10
self.renewal = renewal
particle_sum = 0 # x_j
try:
train_log_dir = "logs/fit/" + self.day
if log == 2:
assert log_name is not None, "log_name is None"
train_log_dir = f"logs/{log_name}/{self.day}/train"
for i in range(self.n_particles):
self.train_summary_writer[i] = tf.summary.create_file_writer(
train_log_dir + f"/{i}"
)
elif check_point is not None or log == 1:
if save_path is None:
raise ValueError("save_path is None")
else:
self.save_path = save_path
if not os.path.exists(f"{save_path}/{self.day}"):
os.makedirs(f"{save_path}/{self.day}", exist_ok=True)
except ValueError as ve:
sys.exit(ve)
if back_propagation:
model_ = keras.models.model_from_json(self.model.to_json())
model_.compile(
loss=self.loss,
optimizer="adam",
metrics=["accuracy", "mse"]
)
model_.fit(x, y, epochs=1, verbose=0)
score = model_.evaluate(x, y, verbose=1)
self.g_best_score = score
self.g_best = model_.get_weights()
del model_
dataset = self._batch_generator_(x, y, batch_size=batch_size)
try:
epoch_sum = 0
epochs_pbar = tqdm(
range(epochs),
desc=f"best - loss: {self.g_best_score[0]:.4f} - acc: {self.g_best_score[1]:.4f} - mse: {self.g_best_score[2]:.4f}",
ascii=True,
leave=True,
position=0,
)
for epoch in epochs_pbar:
# 이번 epoch의 평균 점수
particle_avg = particle_sum / self.n_particles # x_j
particle_sum = 0
# 각 최고 점수, 최저 loss, 최저 mse
max_acc = 0
min_loss = np.inf
min_mse = np.inf
# epoch_particle_sum = 0
part_pbar = tqdm(
range(len(self.particles)),
desc=f"loss: {min_loss:.4f} acc: {max_acc:.4f} mse: {min_mse:.4f}",
ascii=True,
leave=False,
position=1,
)
w = self.w_max - (self.w_max - self.w_min) * epoch / epochs
for i in part_pbar:
part_pbar.set_description(
f"loss: {min_loss:.4f} acc: {max_acc:.4f} mse: {min_mse:.4f}"
)
g_best = self.g_best
x_batch, y_batch = dataset.next()
weight_min, weight_max = self.__weight_range__()
if dispersion:
ts = weight_min + np.random.rand() * (weight_max - weight_min)
g_, g_sh, g_len = self._encode_(self.g_best)
decrement = (epochs - epoch + 1) / epochs
g_ = (1 - decrement) * g_ + decrement * ts
g_best = self._decode(g_, g_sh, g_len)
if empirical_balance:
if np.random.rand() < np.exp(-(epoch) / epochs):
w_p_ = self._f(
x, y, self.particles[i].get_best_weights()
)
w_g_ = self._f(x, y, g_best)
w_p = w_p_ / (w_p_ + w_g_)
w_g = w_p_ / (w_p_ + w_g_)
del w_p_
del w_g_
else:
p_b = self.particles[i].get_best_score()
g_a = self.avg_score
l_b = p_b - g_a
sigma_post = np.sqrt(np.power(l_b, 2))
sigma_pre = (
1
/ (
self.n_particles
* np.linalg.norm(
weight_min - weight_max
)
)
* sigma_post
)
p_ = np.exp(-1 * sigma_pre * sigma_post)
# p_ = (
# 1
# / (self.n_particles * np.linalg.norm(self.particle_max - self.particle_min))
# * np.exp(
# -np.power(l_b, 2) / (2 * np.power(self.sigma, 2))
# )
# )
# g_ = (
# 1
# / np.linalg.norm(self.c1 - self.c0)
# * np.exp(
# -np.power(l_b, 2) / (2 * np.power(self.sigma, 2))
# )
# )
# w_p = p_ / (p_ + g_)
# w_g = g_ / (p_ + g_)
w_p = p_
w_g = 1 - p_
del p_b
del g_a
del l_b
del p_
score = self.particles[i].step_w(
x_batch,
y_batch,
self.c0,
self.c1,
w,
g_best,
w_p,
w_g,
renewal=renewal,
)
epoch_sum += np.power(score[1] - particle_avg, 2)
else:
score = self.particles[i].step(
x_batch, y_batch, self.c0, self.c1, w, g_best, renewal=renewal
)
if log == 2:
with self.train_summary_writer[i].as_default():
tf.summary.scalar("loss", score[0], step=epoch + 1)
tf.summary.scalar(
"accuracy", score[1], step=epoch + 1
)
tf.summary.scalar("mse", score[2], step=epoch + 1)
if renewal == "acc":
# 최고 점수 보다 높거나 같을 경우
if score[1] >= max_acc:
# 각 점수 갱신
min_loss, max_acc, min_mse = score
# 최고 점수 보다 같거나 높을 경우
if score[1] >= self.g_best_score[1]:
# 최고 점수 보다 높을 경우
if score[1] > self.g_best_score[1]:
# 최고 점수 갱신
self.g_best_score = score
# 최고 weight 갱신
self.g_best = self.particles[i].get_best_weights(
)
# 최고 점수 와 같을 경우
else:
# 최저 loss 보다 낮을 경우
if score[0] < self.g_best_score[0]:
self.g_best_score[0] = score[0]
self.g_best = self.particles[i].get_best_weights(
)
epochs_pbar.set_description(
f"best - loss: {self.g_best_score[0]:.4f} - acc: {self.g_best_score[1]:.4f} - mse: {self.g_best_score[2]:.4f}"
)
elif renewal == "loss":
# 최저 loss 보다 작거나 같을 경우
if score[0] <= min_loss:
# 각 점수 갱신
min_loss, max_acc, min_mse = score
# 최저 loss 와 같거나 작을 경우
if score[0] <= self.g_best_score[0]:
# 최저 loss 보다 작을 경우
if score[0] < self.g_best_score[0]:
# 최고 점수 갱신
self.g_best_score = score
# 최고 weight 갱신
self.g_best = self.particles[i].get_best_weights(
)
# 최저 loss 와 같을 경우
else:
# 최고 acc 보다 높을 경우
if score[1] > self.g_best_score[1]:
self.g_best_score[1] = score[1]
self.g_best = self.particles[i].get_best_weights(
)
epochs_pbar.set_description(
f"best - loss: {self.g_best_score[0]:.4f} - acc: {self.g_best_score[1]:.4f} - mse: {self.g_best_score[2]:.4f}"
)
elif renewal == "mse":
if score[2] <= min_mse:
min_loss, max_acc, min_mse = score
if score[2] <= self.g_best_score[2]:
if score[2] < self.g_best_score[2]:
self.g_best_score[0] = score[0]
self.g_best_score[1] = score[1]
self.g_best_score[2] = score[2]
self.g_best = self.particles[i].get_best_weights(
)
else:
if score[1] > self.g_best_score[1]:
self.g_best_score[1] = score[1]
self.g_best = self.particles[i].get_best_weights(
)
epochs_pbar.set_description(
f"best - loss: {self.g_best_score[0]:.4f} - acc: {self.g_best_score[1]:.4f} - mse: {self.g_best_score[2]:.4f}"
)
particle_sum += score[1]
if log == 1:
with open(
f"./{save_path}/{self.day}/{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv",
"a",
) as f:
f.write(f"{score[0]}, {score[1]}")
if i != self.n_particles - 1:
f.write(", ")
else:
f.write("\n")
part_pbar.refresh()
if check_point is not None:
if epoch % check_point == 0:
os.makedirs(f"./{save_path}/{self.day}", exist_ok=True)
self._check_point_save(
f"./{save_path}/{self.day}/ckpt-{epoch}")
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
gc.collect()
except KeyboardInterrupt:
print("Ctrl + C : Stop Training")
except MemoryError:
print("Memory Error : Stop Training")
except Exception as e:
print(e)
finally:
self.model_save(x, y, save_path)
print("model save")
if save_info:
self.save_info(save_path)
print("save info")
return self.g_best_score
def get_best_model(self):
"""
최고 점수를 받은 모델을 반환
Returns:
(keras.models): 모델
"""
model = keras.models.model_from_json(self.model.to_json())
model.set_weights(self.g_best)
model.compile(
loss=self.loss,
optimizer="adam",
metrics=["accuracy", "mse"]
)
return model
def get_best_score(self):
"""
최고 점수를 반환
Returns:
(float): 점수
"""
return self.g_best_score
def get_best_weights(self):
"""
최고 점수를 받은 가중치를 반환
Returns:
(float): 가중치
"""
return self.g_best
def save_info(self, path: str = "./result"):
"""
학습 정보를 저장
Args:
path (str, optional): 저장 위치. Defaults to "./result".
"""
json_save = {
"name": f"{self.day}/{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5",
"n_particles": self.n_particles,
"score": self.g_best_score,
"c0": self.c0,
"c1": self.c1,
"w_min": self.w_min,
"w_max": self.w_max,
"loss_method": self.loss,
"empirical_balance": self.empirical_balance,
"dispersion": self.dispersion,
"negative_swarm": self.negative_swarm,
"mutation_swarm": self.mutation_swarm,
"random_state_0": self.random_state[0],
"random_state_1": self.random_state[1].tolist(),
"random_state_2": self.random_state[2],
"random_state_3": self.random_state[3],
"random_state_4": self.random_state[4],
"renewal": self.renewal,
}
with open(
f"./{path}/{self.day}/{self.loss}_{self.g_best_score}.json",
"a",
) as f:
json.dump(json_save, f, indent=4)
def _check_point_save(self, save_path: str = f"./result/check_point"):
"""
중간 저장
Args:
save_path (str, optional): checkpoint 저장 위치 및 이름. Defaults to f"./result/check_point".
"""
model = self.get_best_model()
model.save_weights(save_path)
def model_save(self, x, y, save_path: str = "./result"):
"""
최고 점수를 받은 모델 저장
Args:
save_path (str, optional): 모델의 저장 위치. Defaults to "./result".
Returns:
(keras.models): 모델
"""
model = self.get_best_model()
score = model.evaluate(x, y, verbose=1)
print(
f"model score - loss: {score[0]} - acc: {score[1]} - mse: {score[2]}")
model.save(
f"./{save_path}/{self.day}/model_{score[0 if self.renewal == 'loss' else 1 if self.renewal == 'acc' else 2 ]}.h5"
)
return model