mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
69 lines
1.3 KiB
Python
69 lines
1.3 KiB
Python
import os
|
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
|
|
|
import gc
|
|
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.model_selection import train_test_split
|
|
from tensorflow import keras
|
|
from tensorflow.keras import layers
|
|
from tensorflow.keras.models import Sequential
|
|
|
|
from pso import Optimizer
|
|
|
|
|
|
def make_model():
|
|
model = Sequential()
|
|
model.add(layers.Dense(10, activation="relu", input_shape=(4,)))
|
|
model.add(layers.Dense(10, activation="relu"))
|
|
model.add(layers.Dense(3, activation="softmax"))
|
|
|
|
return model
|
|
|
|
|
|
def load_data():
|
|
iris = load_iris()
|
|
x = iris.data
|
|
y = iris.target
|
|
|
|
y = keras.utils.to_categorical(y, 3)
|
|
|
|
x_train, x_test, y_train, y_test = train_test_split(
|
|
x, y, test_size=0.2, shuffle=True, stratify=y
|
|
)
|
|
|
|
return x_train, x_test, y_train, y_test
|
|
|
|
|
|
model = make_model()
|
|
x_train, x_test, y_train, y_test = load_data()
|
|
|
|
loss = ["categorical_crossentropy"]
|
|
|
|
pso_iris = Optimizer(
|
|
model,
|
|
loss=loss[0],
|
|
n_particles=100,
|
|
c0=0.4,
|
|
c1=0.8,
|
|
w_min=0.7,
|
|
w_max=1.0,
|
|
negative_swarm=0.1,
|
|
mutation_swarm=0.2,
|
|
)
|
|
|
|
best_score = pso_iris.fit(
|
|
x_train,
|
|
y_train,
|
|
epochs=200,
|
|
save=True,
|
|
save_path="./result/iris",
|
|
renewal="acc",
|
|
empirical_balance=False,
|
|
Dispersion=False,
|
|
check_point=25,
|
|
)
|
|
|
|
gc.collect()
|