Files
PSO/mnist.py
jung-geun f18932d6d2 23-07-09
dev container 조정
2023-07-09 00:36:02 +09:00

99 lines
2.3 KiB
Python

# %%
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from pso import Optimizer
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
# %%
model = make_model()
x_train, y_train = get_data_test()
loss = [
"mse",
"categorical_crossentropy",
"sparse_categorical_crossentropy",
"binary_crossentropy",
"kullback_leibler_divergence",
"poisson",
"cosine_similarity",
"log_cosh",
"huber_loss",
"mean_absolute_error",
"mean_absolute_percentage_error",
]
if __name__ == "__main__":
try:
pso_mnist = Optimizer(
model,
loss=loss[2],
n_particles=100,
c0=0.35,
c1=0.7,
w_min=0.5,
w_max=0.9,
negative_swarm=0.2,
mutation_swarm=0.1,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=200,
save=True,
save_path="./result/mnist",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25,
)
except Exception as e:
print(e)
finally:
gc.collect()